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ABSTRACT 

The intent of this project was to use natural language processing and AI features for medical simulation training to 
augment the reality of medical manikins as well as screen-based patient simulators. The work involved defining, 
developing, testing, and demonstrating an intelligent patient simulation software architecture to provide realistic med-
ical training experiences. The solution involves two parallel components—first the integration of language and intel-
ligence models for users and observer/controllers (O/Cs), and second the design for current and future integration of 
smart interaction to take additional advantage of technological capabilities. 

For the first component, software enables users to naturally ask questions and receive responses from the simulator 
(whether hands-on or screen-based), and it allows the simulator to carry out commands issued by the O/C. The user 
and O/C are able to carry out simulation dialog without having to speak in pre-defined manner. The software was 
designed to integrate seamlessly with both manikins and screen-based patient simulators widely in use across the 
DOD. It also integrates with existing intelligence modules such as physiology engines, behavior models, and adaptive 
testing. For the second component, the interaction allows users to engage with the simulated patient and an O/C to 
control the simulation system. The methods facilitate multimodal dialog and feedback between the user and system, 
working with the user to understand, clarify, and put into effect the user’s intent. 

This paper describes the development and testing of the architecture. 
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INTRODUCTION 

A team of researchers and military and civilian medical subject-matter experts (SMEs) created software called 
nXcomms that adds natural language (NL) processing and artificial intelligence (AI) features to simulated patients—
both medical manikins and screen-based virtual patient simulators. The software is intended to provide enhanced, 
realistic medical training experiences, including capabilities for learners to ask questions and receive responses from 
the simulated patients in NL and for observer/controllers (O/Cs) to dynamically control the simulation, including 
changing the underlying physiology. AI functions allow this software to learn from iterative training events. To date, 
this team has defined, developed, internally tested, and demonstrated the software, using a parallel path of two main 
components—first the integration of language and intelligence models for users and for O/Cs, and second the design 
for future integration of smart interaction to take additional advantage of technological capabilities. 

For the first component, software was developed to allow users to naturally ask questions and receive responses from 
the simulator (whether hands-on or screen-based), allowing the simulator to carry out commands issued by the O/C. 
The user and the O/C are able to conduct dialog with the simulator without having to speak in certain pre-defined 
sentences. The software has been designed to integrate seamlessly with both manikins and screen-based patient sim-
ulators widely in use across the DOD. It also integrates with intelligence modules (e.g., behavior models; physiology 
engines) that team members have worked with (Morbini et al., 2012; Sottilare et al., 2017) and even helped develop 
(Bray et al., 2019; Kizakevich et al., 2006). 

For the second component, the concept of smart interaction that was originated by Taylor et al. (2012) was intended 
to improve how a user may engage with the simulated patient or how an O/C can control the simulation system. The 
methods facilitate a kind of dialog between the user and system, working with the user to understand the user’s intent, 
including asking any clarifying questions. nXcomms was designed to allow for the future incorporation of multiple 
input modalities, including speech, gesture, and sketch as natural ways for a user to communicate with intelligent 
systems, and to support multiple modes of feedback, including graphics, video, and speech. The current design and 
future plan are the integration of smart interaction within DOD medical simulation training. 

A proof-of-concept demonstrated that NL software will work in a DOD-simulated patient training environment to 
answer questions posed by users and carry out commands given by the O/C. The design used high-level specifications 
such that it would work on multiple platforms in use at DOD simulation centers. This paper reports on the system’s 
feasibility, usability, reliability, and capability. 

TECHNICAL TASKS 

The work described in this paper was divided into two technical tasks, (1) smart interaction and integration and (2) 
field analysis. 

Task 1—Smart Interaction 

NL Processing 
The first of this task’s objectives was to implement NL capability for typical DOD medical simulation training envi-
ronments, and determine questions and commands that need to be captured by the language processor and subse-
quently map spoken input to an underlying intention and produce responsive output. Desired outcomes were to accu-
rately understand questions and commands in different forms, and respond appropriately, as in natural conversations, 
via spoken words, speech recognition, semantic mapping AI, and speech synthesis response. 
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Programmatic and software requirements leveraged much prior language processing work (Guinn & Hubal, 2003; 
Hubal & Heneghan, 2017). As in past projects, spoken input is mapped to an underlying ‘intent’ that produces respon-
sive output. Simulated personalities are tracked through the branching dialog and also through trust tracking. The 
patient linguistic responses are defined in Ink (github.com/inkle/ink; an open source software tool) dialogs, and trust 
represents the cumulative effect of interactions throughout the encounter. For example, if the user has a high trust 
rating with the virtual patient, then the patient may lean forward and respond positively to the question asked. If the 
user has a low trust rating, the virtual patient may lean back with her arms crossed in front of her and reply tersely. 
Patient interaction is conveyed to the user through dialog, facial expressions, and body language. Combinations of 
postures, facial expressions, and gestures are used to convey various emotions. 

As is typical of NL applications, the design began by creating a workflow for developing branching dialog scripts and 
leveraging SMEs for the content. The workflow model divided the creation of scripts from their implementation in 
Ink, which allowed for the incorporation of SME input to specify patients’ personalities and histories along with the 
speaker’s primary areas of focus. The script writer used this information to construct interactive conversation scripts 
in an implementation-independent form and the scripts could then be implemented in Ink by an independent developer. 

There are three parts to the system’s NL processing: speech-to-text, language understanding, and patient response. 

• Speech-to-text. The advanced deep-learning neural network algorithms developed by Google are used to convert 
microphone audio input-to-text. Google’s service is not unique and any of several services (e.g., from Amazon, 
Apple, or IBM) could be used. The audio is streamed to Google’s servers and immediately returns text as it is 
recognized. The service also handles noisy audio from many environments without requiring additional noise can-
cellation. The system is modular so that, even though it leverages this industry-standard process, it could easily 
support other solutions, including an offline option. 

• Language understanding. Upon receiving the text result, the NL processor intelligently matches the text against a 
list of previously generated intents. The dialog scripts in Ink are used to constrain the expected inputs at any given 
time and thus to maximize hits. In general, there would be only a handful of reasonable inputs—intents—at a given 
time, and thus a limited number of expected directions during any natural dialog. To conduct the match of actual 
input to intents, a list of phrases is needed that signify each intent. In this work, phrases were generated using 
several procedures: (i) taking from transcripts of real conversations, such as from structured clinical examinations 
and from SME discussions; (ii) use of Mechanical Turk whereby people were asked to provide alternative phrasing 
for intents; and (iii) NL training with a team of testers to seed a database. Intents are matched by comparing each 
spoken word against each word in the intent. A stemming algorithm is used for linguistic normalization, and filter 
stop words (e.g., ‘and’, ‘the’). Longer words are given more weight than shorter words; bonus weight is awarded if 
the spoken phrase is contained in the intent. Unless it finds an exact match, the system looks at all intents to search 
for the best match. (Three string distance algorithms, Sørensen–Dice, Levenshtein, and NGram, were tested; none 
improved on the existing approach.) If no option is found, the algorithm highlights any topic hints and causes the 
virtual patient to say a clarification phrase, such as “Could you rephrase that?” The system automatically adds the 
intent if not already in the intent dictionary. 

New intent matching features were developed to improve support for the “always listening” environment required 
when talking to a wounded soldier and to reduce false positives. These include adding support for ‘must include’ 
words for individual examples; extended NL to improve resolution of very similar intents; and detection of ques-
tions versus statements that do not require a patient response. Finally, the system is aware of medical procedures, 
physiology terminology and common medical parlance. That is, it provides (i) support for various volumes per time 
period (“Start hemorrhage at 50 mL per minute.”); (ii) support for various masses per volume period (“Inject 5 mL 
of morphine subcutaneous at a concentration of 1 mg per mL.”); and (iii) hints as to what the user is likely to talk 
about to include mass and volume units, reducing the chance of the algorithm misinterpreting what was said. 

Branching conversation was improved by several adjustments: (i) automatic selection of a specific response if the 
learner does not say anything for a set period (included option for this automatic response to not be visible to the 
user); (ii) support for falling through conversation choices to the next set of choices (e.g., if a choice is “Discuss 
medications” and “Allow Fall Through” is set, and the user speaks, “Tell me about any prescriptions you are tak-
ing,” the system would first match against the “Discuss medications” option and proceed to load the next choices; 
if one of the next choices was indeed something like “Tell me about your prescriptions” then that would be triggered 
too); this system was also used to support the user asking multiple questions in the same utterance; and (iii) priori-
tizing and giving extra weight to defined keywords per intent. 
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• Patient response. The Amazon Polly service is used to convert the patient’s text response to an audio file for play-
back. Amazon Polly (again, among other like services) uses deep learning technologies to synthesize speech that 
sounds like human voice. For the screen-based virtual patient, the voice playback is synchronized to the virtual 
patient’s lips movement using actual phonemes of the spoken text (a set of lip shape animations model actual lip 
shapes of spoken English) to create a more immersive user experience. The system supports multiple voices for 
different purposes (e.g., the manikin, virtual patient, and O/C feedback all have distinct voices). In addition, the 
service can add certain special effects like coughs and pauses. Audio files are cached at two levels for improved 
performance. First, they are cached on a server, decreasing latency for later users who interact with the same char-
acter. Second, they are cached locally on the user’s machine, so if the user runs through the encounter a second 
time, there is no need to fetch the file from a remote server. In the occasional case of a failed response, a smart 
system helps nudge the user in the direction of a successful response. For example, if the microphone volume is 
low, the virtual patient asks the user to speak up. Meanwhile, if the response is unintelligible, the patient asks the 
user to rephrase their statement. In addition, software performance was profiled, including optimizing audio tracks 
for streaming, reducing memory footprint by 80%. 

Supra-Linguistic Processing 
The second of this task’s objectives was to investigate meta-linguistic input (i.e., the speaker’s means of communica-
tion, beyond the content), and important movement (i.e., the speaker’s movement) during user-patient interactions and 
O/C-patient interactions. The initial step was observing standardized patient training and actual patient interactions at 
the University of North Carolina (UNC) School of Medicine and, from those observations, identifying meta-tagging 
needed to indicate actions that a virtual patient should make, such as specific gestures or expressions. Actions taken 
on the manikin, such as pulse rate or needle decompression, are captured and translated into informed responses. 
Embedding conformable sensor technology was explored to provide real time assessments, further enhancing the skill 
development supported. 

An audio input system was also designed and implemented. It supports the user and the O/C talking to the system 
simultaneously, understands their spoken words and takes the appropriate action. The system involves: (i) accepting 
input from two separate microphones and funneling the input to the correct NL; (ii) optional playback of the user’s 
speech to the O/C to support the user being a distance from the O/C; (iii) support for both the O/C and the user to hear 
the patient’s response; (iv) support for only the O/C to hear responses from their NL physiology commands; (v) audio 
files returned from the text-to-speech module that are cached to the local hard drive to reduce network usage and 
improve latency in NL responses; (vi) O/C ability to hear what the user is saying to the patient as well as the patient’s 
reply; (vii) O/C ability to use speech-to-text to record notes; (viii) O/C ability to control the physiology engine running 
on the manikin in real time using voice commands; (ix) O/C ability to control manikin systems directly if needed; (x) 
incorporation of microphone-recording decibel-level controls as well as separate volume controls for O/C and user 
speakers; and (xi) optionally saving user voice-audio recordings to disk or a server for NL training. Additionally, 
Amazon Polly support was updated to include Speech Synthesis Markup Language (SSML). Developers can use Am-
azon Polly to generate speech from either plain text or from documents marked SSML. Using SSML-enhanced text 
gives additional control over how Amazon Polly generates speech from the text provided. For example, it is possible 
to include a long pause within the text or change the speech rate or pitch. Other options include emphasizing specific 
words or phrases; using phonetic pronunciation; and including breathing sounds and whispers. Amazon Polly provides 
these types of control with a subset of the SSML markup tags that are defined by the World Wide Web Consortium 
(W3C, 2010). 

The system is built to work well with virtually any manikin/simulator environment. It is possible even to select the 
manikin to connect to; each manikin has a unique identifier based on the computer controlling it and its IP address. 
nXcomms accommodates Representational State Transfer (REST) application programming interface (API) access, 
as well as response from Unity applications, and has built-in server-side forwarding to support REST calls. REST 
style interfaces are an enabling feature for web services, which in turn make data access and control information from 
elsewhere on the network available to web applications and mobile apps. RESTful APIs have a number of defining 
characteristics. Pertinent are the stateless interface, such that requests provide all the information required to perform 
the requested service; layerability, so that the clients do not know if they are directly connected to the service or if 
there are intermediate layers that provide features such as scalability and security; and uniform interface, which pro-
vides a simple and complete method for accessing and manipulating the service. Adding a RESTful API provides a 
standard mechanism for any web service or tool to access and manipulate medical simulation. Some of the features 
developed for the server RESTful API include tracking choices per user to allow for recreating any training session in 
detail and recording lines the user spoke as speech-to-text along with any matched and unmatched intents. These 
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tracking and recording data are used to (i) train the language processing AI; (ii) send data, in the unlikely event of an 
error in the application, to the server; (iii) send additional information such as scenario and encounter identifier; and 
(iv) cache to reduce data signal noise while reducing bandwidth. 

Technical Components 
• Physiology engine. The Pulse physiology platform (Bray et al., 2019) supports the design, development, and use of 

physiologic modeling for building medical training content. The goal for Pulse is to lower the barrier to entry for 
medical training and simulation developers by supplying an open-source physiology engine that produces reliable, 
accurate, validated physiologic responses. The architecture is specifically designed to reduce model development 
time and increase the usability of the engine in simulations by creating a modular, extensible ontology for simulat-
ing the human physiology. The Pulse platform, a fork of the BioGears physiology engine, is accessible via a public 
repository that has a number of users and outside contributors to foster a true open-source community. The Pulse 
physiology platform has also been integrated into a number of research, clinical, and commercial applications.  

Pulse is comprised of lumped-parameter models, which use circuit analogs (i.e., resistors and capacitors) to repre-
sent the behavior of a region of interest/system of the body. Incorporation of feedback is accomplished by modeling 
feedback mechanisms and applying the effects to the circuit components. The physiology engine also includes 
pharmacokinetic and pharmacodynamic models, which use the physiologic properties of the patient and the physi-
ochemical properties of the drug in differential equations to represent drug diffusion and distribution in the body. 
Disease and treatment models are designed with differential equations representing the effects of disease and treat-
ment and then applied to the lumped-parameter models to affect the overall calculations. Complete scenario evalu-
ation is conducted by constructing and executing scenarios that represent disease and treatment actions. A matrix 
of injuries, disease, and/or treatments is constructed with timelines and expected physiologic outcomes. The phys-
iologic model behavior is compared to the expected behavior to ensure trends, timeframes, and magnitude of re-
sponses are valid. Pulse can be incorporated into the framework of any medical tutorial or diagnostic support tool 
to project the condition of the patient as time progresses. 

The Pulse scenario capability sets up initial conditions for use cases. Vitals updates are received from Pulse and 
displayed in a user interface (UI) element and to any attached manikin. Data and commands are sent back to the 
physiology engine, when, for example, the user performs a needle decompression. 

• Manikin layer. An abstraction layer was created to support multiple manikins. For this effort, the system was de-
signed with the Laerdal SimMan® 3G, using the non-commercial LLEAP software development kit (SDK)/API ver 
6.7 and subsequent updates. This SDK is in active development by Laerdal, and it gives access to all advanced 
features of any Laerdal manikin, including vital signs, session logs, and manikin sensors. The current application 
accesses the SDK via a RESTful API, but it can also be accessed via desktop applications in C# and C++. 

• Interface layer. To support other physiology engines and manikin types, an interface layer converts Pulse physiol-
ogy data to internal abstraction data structures and then converts internal abstraction data structures to the manikins’ 
data structures. Nothing in the internal system is tied to the Pulse engine—there is always a layer of abstraction 
between the system and the external engine. The same is true for the manikin interface in that the application is not 
tightly coupled to the Laerdal manikin SDK. 

Task 2—Integration and Field Analysis 

This task’s objectives were to integrate the system components into a simulation center and analyze results by ad-
dressing (i) assistance to the operator of a simulation who must manipulate the scenario; (ii) capture of questions and 
commands; (iii) integration of AI modules to support NL; and (iv) leveraging NL processing to overcome traditional 
input restrictions. 

Integration of the components into a simulation center was shown in two parallel and modular paths, virtual patient 
and interactive medical manikin. The approach is modular; while a particular physiology engine (Pulse), specific 
manikin (Laerdal) and its related SDK, and a single language platform for translation were chosen, the platform itself 
can readily incorporate many different choices from each of these categories. Working with military and civilian 
medical SMEs, a scenario was crafted that meets current operational needs. The scenario was presented to the sponsor 
for demonstration utilizing both a virtual patient and a manikin. On both paths, the focus was equally on (i) making 
the casualty communicative and (ii) making it easy for the O/C/trainer to manipulate what is presented to users via 
voice to lessen cognitive and behavioral burden. For both the virtual and manikin approaches, the incorporation of a 
physiology engine provides additional realism and training value. 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

IITSEC 2021 Paper No. 21251 Page 6 of 11 

Scenario Development 
There was much overlap with slight differences between the virtual patient and interactive medical manikin. To make 
the system function requires building scenarios. Scenarios require populating physiology and other AI components 
with situation-specific data. Scenarios also require the specification of criteria to assess ‘success’—that is, the learning 
objectives in an educational setting. As examples: Did the user address all important topics to sufficient depth? Did 
the user avoid incorrect behaviors? Populating components defines what actions should occur under what conditions. 

For the NL component, the scenario consists of a clinician interacting with a patient using branched conversations. 
Developing this dialog requires creating a script of the ‘best case’ interaction between the provider and patient or 
system and O/C; coding the script in Ink; generating alternative phrases for every conversational turn in the script; 
testing the dialog by bringing in SMEs and other providers; revising the dialog in the NL engine based on providers’ 
input; and repeating the last three steps until a nearly complete conversation is done. The conversations and responses 
from the patient were carefully considered, should they elicit stress or emotional responses from the user. The re-
sponses from both the patient and user—as well as the dialog between the system and simulation O/C—are logged for 
subsequent analysis. A trust indicator shown during the interaction and a comprehensive after-action review linking 
user actions against the aforementioned success criteria are meant to allow users to understand the effects of their 
actions and O/Cs to better engage user performance. 

The UI sections are: (i) buttons, through which the virtual patient has a display of the choices from the conversation 
tree that are available at that particular time. The user can click on one of these buttons or talk in a natural way on a 
topic related to that button. If the button states “Ask for purpose of visit” the user can say, for example, either “Tell 
me about the reason for your visit.” or “What brings you in today?”; (ii) trust meter to dynamically show the extent of 
rapport that the learner has built to that point; (iii) microphone readiness indicator that turns amber when it is activated 
and green when it detects the user talking. It is red and disabled while the patient is responding; and (iv) chat log to 
display all of the questions the user has asked along with the patient responses; this feature is hidden by default. 

After the encounter, a summary can be configured to display feedback of the user’s actions, achievements, or mistakes. 
The system can also display a score and any other values the scenario designer wishes to track. This output display is 
controlled in the Ink file, which is interpreted and does not require programmatic change. These summary items are 
clickable and, if selected will take the user to an After-Action-Replay (AAR). The encounter’s summary page is able 
to trigger an AAR when an individual summary entry is selected, or the Review Encounter button is pressed. The 
Review Encounter button triggers the AAR without passing any highlighted variables. However, clicking a summary 
entry can pass the AAR one or more variables to highlight—example variables are trust or user bias. The scenario 
designer can define any desired variable in the Ink file and the AAR system will show the user how their choices 
affected it or could have affected it. When viewing the AAR, a progress bar across the top of the screen contains a 
notch for every choice the user made. This bar is fully interactable and clicking a notch takes the user directly to that 
choice. The arrow buttons along the left-hand side of the screen are used to step though the user’s choices one at a 
time. When a replay step is selected the choices available to the user at that time are displayed and the system auto-
matically highlights the user-triggered button. If the AAR system is passed Ink variables to highlight and the user 
selected a choice that increased one of these variables, then that progress bar’s notch is green. The notch is red if their 
choice decreased the variable, or if there was a choice that increased the variable, but the user chose a different option. 
If neither of these two previous situations applies, then the notch appears white. 

For the interactive medical manikin, the system has the ability for the O/C to load previously generated Pulse scenarios 
via NL, which starts the patient in a particular physiological state with predetermined vitals. Furthermore, different 
Ink files define distinct scenarios, and their associated intents and expected actions. During this effort, medical SMEs 
and software developers collaborated to detail wounded soldier scenarios in which field care for a patient is provided. 
Scenarios were created with the Laerdal SimMan 3G advanced patient simulator in mind and available (see following 
figure), but nXcomms can be applied to myriad patient simulators. The physiology engine, the manikin, and software 
platform allow for nearly any scenario as well as administration of pharmaceuticals. Figure 1 shows the Laerdal SDK 
and interface to which the software connects. The Laerdal application provides a direct connection to the SimMan 3G 
manikin and shows the data being sent to and received from the manikin. 

For the scenarios, it was supposed that the combat medic (CM) may have the items shown in Table 1 below at their 
disposal. The scenario begins with the user (a CM) arriving one to two minutes after an injury was sustained. The 
patient is calm and able to give answers but in obvious pain. The patient has a severe hemorrhage in the right leg and 
will develop a tension pneumothorax in the right lung. Resting vital signs are: blood pressure (BP) 120/70; heart rate 
(HR) 64 beats/min; respiratory rate (RR) 16 breaths/min; initial blood volume 5500 mL. 
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Figure 1. Visual representation of Laerdal SDK 

For scenario part A, a 24-year-old male on patrol sustains shrapnel injuries from an IED explosion, causing a leg 
laceration. There is observable laceration of the right leg below the knee. A proximal (groin) tourniquet is applied. 
Medevac is unavailable within two hours. Vitals are: BP=144/84; HR=122 beats/min; RR=24 breaths/min. During 
secondary survey the CM is able to isolate all shrapnel to below the knee, requiring re-placement of tourniquet distally 
(just above knee) to preserve thigh tissue. The manikin/casualty (CAS) is laid on ground, with leg injury covered by 
the uniform. The uniform is bloody and a pool of blood around leg indicates blood loss. The O/C sets bleed rate of 85 
mL/min due to external hemorrhage on right leg. The O/C informs the CM that CAS is awake/alert, and is actively 
trying to put a tourniquet on, though is unable to coordinate movement. This information tells CM that CAS has no 
significant spinal injury. The CM approaches and initiates dialog. 

NL processing allows for branching flow to the progression of dialog, with changes to the exact language coded. The 
CM was encouraged to use typical speech and language; as described above, the system captures the intent of the 
dialog, which leads to appropriate responses; whereas the virtual patient has a branching conversation structure, this 
is a flat conversation meaning the user can ask any question at any time. 

For scenario part B, a 24-year-old male on patrol sustains shrapnel injuries from an IED explosion, causing a leg 
laceration plus tension pneumothorax. Initial injuries are noted to the face, neck, and chest as well as a 4½ inch deep 
laceration to the right mid-thigh which is bleeding profusely. Vitals are: BP=114/83; HR=100 beats/min; RR=15 
breaths/min (dips to 13); blood vol=~4600 mL. A hasty tourniquet is applied immediately to the right thigh. The CAS 
is on a bed with injuries exposed. The O/C sets bleed rate of 170 mL/min due to external hemorrhage on right leg. 
(Note: Femoral artery normally flows at ~150 mL/min, bumping up due to stress.) The O/C informs CM that CAS is 
awake/alert and has no significant spinal injury. The CM approaches and initiates dialog. 

User Interface 
The user experience for nXcomms was designed specifically for this project and contains some unique elements. A 
framework was implemented that creates asynchronous connection among the system, Pulse, and a Laerdal manikin. 
It is important to repeat that nearly any physiology engine and/or manikin could be substituted. The interface uses a 
local IIS web server and supports connections over WiFi. Several features are as follows: (i) push real-time state 
updates multiple times per second from Pulse to the manikin so that Pulse physiology simulation can be used to control 
all patient vital signs, with support for an adjustable timescale as appropriate for network and hardware performance; 
(ii) send Laerdal events to manikin (e.g., pause/resume simulation), which also gives the option of controlling all 
manikin features directly (see Table 2), including the vital signs if desired; (iii) receive event updates two ways from 
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Table 1. Combat medic scenario items available  Table 2. Manikin control statements 

Component Drugs Start hemorrhage, e.g., “Start hemorrhage at 50 ml per mi-
nute” 

Combat Pill Pack (con-
tains three medications) 

Tylenol (acetaminophen) 500 
mg tablet (x2) 
Mobic (meloxicam) 15 mg tab-
let (1) 
Avelox (moxifloxacin) 400 mg 
tablet (1) 

Increase/decrease hemorrhage by a fixed amount or by a 
percentage of the current value (e.g., “Decrease hemor-
rhage by 10%”, “Reduce bleeding by 50 ml per minute”) 
Apply tourniquet 

Apply/release pressure dressing 

Pain medications (differ-
ent dosing based on treat-
ing pain or for sedation) 

Ketalar or Ketaset (ketamine) 
500 mg per 5 mL (100 mg/mL) 
vial 
Dosing: IV/IO: 0.1-0.2 mg/kg 
push every 10-30 minutes [typ-
ical dose is 20 mg] 
IM: 0.4-0.8 mg/kg IM injection 
every 10-30 minutes [typical 
dose is 50 mg] 

Insert tamponade (e.g., “user inserted tamponade reduce 
hemorrhage by 95%”) 

End hemorrhage 

Inject morphine (e.g., “inject 5 ml of morphine subcutane-
ous at 1 mg per ml”) 

Actiq (fentanyl) lollipop 800 
mcg 
Dosing: typically one OTFC 
(oral transmucosal fentanyl cit-
rate) 

Start saline infusion (e.g., infuse saline intravenous 100 ml 
per sec with a bag volume of 1000 ml) 
Remove saline infusion 

Start tension pneumothorax (e.g., “start tension pneumo-
thorax right lung severity 75%” 

Fentanyl citrate 250 mcg / 5 
mL vial 
Dosing: typically 50 mcg IV/IO 
every 30-120 minutes as 
needed 

Increase/decrease tension pneumothorax by fixed percent-
ages 
Collapse lung 

Percocet (acetaminophen/ox-
ycodone) 5/325 mg tablet 
Dosing: typically 1-2 tablets 
every 4-6 hours as needed 

Needle decompression—support for O/C saying the com-
mand in case the manikin does not have the functionality 
to send this user action 
Start/stop intubation 

Morphine 10 mg/mL vial 
Dosing: typically 5-10 mg 
IV/IO every 1-6 hours as 
needed 

Apply oxygen (e.g., “start ventilating at 5 L per minute”) 

Nausea/ vomiting Zofran (ondansetron) 40 mg / 
20 mL (2 mg/mL) vial 
Dosing: typically 4mg every 4 
hours as needed 

Listening to right/left or both lungs (e.g., “user listening to 
right lung”) 
Ability to record notes about the session (e.g., “Note user 
checked pupil responsiveness”) 

    
the manikin to cover the different ways a user and O/C can interact with the manikin; one system allows for registering 
a delegate that receives single updates from the SDK, and the other polls the SDK for batched updates, which are then 
parsed for the events to listen for; (iv) support for various physiology parameters sent to the manikin, including heart 
rate, blood pressure, SpO2, temperature, and others; (v) ability to send multiple physiology parameters in parallel to 
minimize needed bandwidth; (vi) support for manikin event updates sent in real time, so the O/C immediately sees 
changes to the manikin state; (vii) separate manikin event updates from physiology updates, reducing log traffic to 
relevant updates; (viii) login interface supporting multiple possible manikins and allowing the user to select and con-
nect to the correct one; (ix) receiving events in the application when the user interacts with the patient manikin (e.g., 
by checking the pulse performing a needle decompression, inserting a chest tube; essentially anything the manikin can 
send); and (x) sending tension pneumothorax lung resistance and other manikin-specific data to the manikin. The 
ability for the O/C to use natural voice to talk to the physiology engine is present, via the NL processing module, to 
give the commands. Pulse engineers served as collaborators to incorporate additional required functionality, specifi-
cally with the added callbacks for internal physiology engine events (e.g., “saline solution bag is empty”, “patient has 
entered hypoxia”). 

Overall UI capabilities include: (i) callbacks so that UI elements can be updated when physiology parameters change 
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(e.g., a change in the severity of the tension pneumothorax, or a hemorrhaging amount update); (ii) dynamic graphical 
representation of the current injury hotspots; (iii) display of multiple system events in the event log UI, including those 
received from the manikin, the physiology engine, and simulation; (iv) hooking up state UI elements to physiol-
ogy/manikin events; (v) ability to pause/play the simulation; (vi) administering various medications, including Keta-
mine; (vii) blood transfusions; and (viii) internal hemorrhage support (i.e., spleen, liver, brain, aorta, splanchnic). 

Field Demonstration 
A technical demonstration was conducted on December 19, 2019 at Uniformed Services University of the Health 
Sciences (USUHS) in Bethesda, MD, presenting the following scenario: The warfighter receives a gunshot wound to 
the leg, thereby requiring the combat medic to control the bleeding by applying a tourniquet. After the warfighter has 
been stabilized, he is then transported via aeromedical ambulance to a Role 2 care facility. At altitude, the warfighter 
develops a tension pneumothorax, which is resolved by performing a needle decompression, thereby releasing the 
pressure from the pleural cavity and allowing heart and lung function to return to normal. During the technical demon-
stration, the control panel initiated the scenario, marked the exact times when the tourniquet and needle decompression 
procedures occurred, and signaled the scenario’s conclusion. The Pulse physiology engine controlled the symptomol-
ogy of both manikins. Finally, the software platform interface (Figure 2) visualized the patient’s physiology parame-
ters in real time and provided summary statistics at the scenario’s conclusion. 

 
Figure 2. System interface 

In the application and scenario, the top left displays the status of the scenario (e.g., amount of bleeding, severity of the 
tension pneumothorax, and whether a needle decompression has been attempted). This information is pushed from the 
Pulse engine to the Laerdal SDK so that the manikin reacts accordingly. The top right is the Pulse engine data, which 
is pushed to the manikin via the Laerdal SDK. So, if the Pulse engine specifies a respiration rate of 16, that state is 
reflected both on the manikin and in the Laerdal application. The bottom right of the application is the log of all events 
from the Pulse engine, the application, and the Laerdal SDK. When the system receives notification of a needle de-
compression event from the manikin, the notification appears here, and the system forwards the event to the Pulse 
engine. When the Pulse engine changes state (e.g., the patient enters tachycardia), the event appears, and the system 
pushes any relevant info to the manikin. The figure in the center of the image shows the location and severity of 
current injuries. In this image, the patient suffers from a tension pneumothorax and bleeding from the femoral artery. 
The bottom left corner of the application contains controls for the application: volume levels, microphone levels, etc. 

The design allows the whole chain to be exercised either as part of a large training event, or in separate steps where 
each part of the care chain can be trained independent of the others. In the latter situation, the simulation starts from 
the saved state of the prior simulation; learners care for the patient as per normal and then save their state to a library. 
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That saved state can then be accessed and used as the starting point further along the care chain. The design meets the 
current medical simulation needs and is flexible to adapt to changing technology both in the underlying transport 
layers and in the higher-level application layers. 

In the demonstration of nXcomms at USUHS, time was divided between the virtual patient and the Laerdal manikin 
portions. For the manikin, the SimMan 3G patient simulator was used (though the approach is vendor and device 
agnostic, to enable alternative manikins as well as virtual patients, in mixed reality holograms, and part-task trainers). 
The Laerdal SimMan 3G LLEAP SDK was licensed as were Laerdal’s Patient Monitor Software and SimDesigner. 
The virtual patient relied on the nXhuman architecture developed originally at UNC (Hubal & Heneghan, 2017). The 
summary at the end of the virtual patient encounter was demonstrated to show what the clinician did correctly vs. 
incorrectly and to show a trust meter and score. Clicking on the trust meter brought up an AAR to review choices 
made during the encounter, allowing viewers to step through the encounter one question at a time or jump to any 
question by clicking on the progress bar at the top of the screen: a green tick indicated the trust value increased while 
a red tick indicated where it decreased. The ability for viewers to exit replay mode and continue the encounter from 
that point was also demonstrated. 

SUMMARY AND FUTURE DIRECTION 

This nXcomms effort involved: (i) improving language understanding through extended dialog scripting, phraseology 
collection and generation, and intent matching; (ii) the ability to capture simultaneous voice input as for patient and 
O/C dialogs; (iii) improving language generation through response selection, conversational fall-through, SSML met-
alinguistic controls, and keyword prioritization; (iv) performance improvement through optimization, caching, and 
memory usage reduction; (v) RESTful API to any external module to include Pulse physiology platform and Laerdal 
SimMan 3G; (vi) manikin control through voice command; physiology control through manikin interaction; (vii) sce-
nario design with parameterized initialization, branching dialog, necessary interplay among connected components 
(AI modules, manikin), and assessment against learning objectives; and (viii) developing to be compatible with the 
DOD’s Medical Simulation Training Architecture (Scheirich et al., 2019), which provides an open standard for mili-
tary medical simulation to readily connect system components such as hands-on simulators, virtual patients, and per-
formance measurement engines. Complex combat trauma scenarios were demonstrated using a manikin and a screen-
based virtual patient. The software was designed from the ground up to be a manikin-agnostic product. 

The software components are modular and interoperable. These capabilities were demonstrated by (i) integrating an 
off-the-shelf physiology engine developed by a partner, Kitware, (ii) integrating an off-the-shelf, widely used hands-
on simulator from Laerdal, (iii) using publicly available software-as-a-service tools from Amazon and Google to man-
age critical components of NL understanding and generation, and (iv) preparing scenario content to use scriptable ele-
ments to control for initialization, dialog management, gesture and emotion expression, and performance assessment. 

Looking forward, multiple directions are envisioned for improving language learning. For instance, to speed up the 
creation of the intents file involves building a database of questions (with their corresponding alternate ways of asking) 
that can be pulled from to quickly build future scenarios. A prototype website is able to make it easier to process 
matches and mismatches to build an intents file. And support is being added for automated synonym substitution, so 
that the system can capture how users ask the same question in different ways. Similarly, existing databases can be 
taken advantage of such as recordings from past medical encounters to which team members, in particular the UNC 
personnel, have access. These recordings are diverse and will serve as a basis for machine learning of the dialogs. In 
concert, a word-to-vector neural network is being integrated, incorporating the latest developments in linguistic se-
mantics for NL processing. These models are shallow, two-layer neural networks that are trained to reconstruct lin-
guistic contexts of words. The neural net takes as its input a large corpus of text and produces a vector space, typically 
of several hundred dimensions, with each unique word in the corpus being assigned a corresponding vector in the 
space. Word vectors are positioned in the vector space such that words that share common contexts in the corpus are 
located in close proximity to one another in the space. Relatedly, a tool is being developed to automate the implemen-
tation of the branching conversation scripts into Ink without the additional step involving a dialog developer. The 
concept is to learn from encounters; that is, as a given user’s input is captured, it is then used to inform the NL for the 
next user, and so on. Structures are in place, to include the specific intents file that is used to ‘understand’ the string 
of words that is captured by Google, modified manually now but through a process to be automated. For patient 
response, future versions will also be able to modulate speed and tone of voice according to patient stress level, and 
separately by generating dynamic responses based upon previously recorded actor voices, thus producing more nu-
anced human like responses. Additionally, the system is designed to run optimally via a cloud connection. Internal 
experiments were conducted with the system running offline, resulting in much less precise and slower simulated 
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patient responses. Much work needs to be done to push this capability farther. 

Last, the concept of what it means to present a virtual patient is being extended by incorporating additional AI mod-
ules. For example, the patient’s personality and emotions are continually being improved. A scenario designer can 
give the virtual patient a specific personality, or define emotions and/or traits to track within the Ink script. In the 
virtual patient encounter, trust and a patient bias value increase or decrease based upon the questions the user asks. 
These values are then used to both change the virtual patient’s demeanor and how they respond to future questions. 
Similarly, in the future, details will be added on how conversations flow, using existing research into scientific argu-
mentation and rhetoric. The idea is to build upon models of conversational flow that take characteristic or prototypical 
shape. Also, cognition and metacognition model additions to the architecture will enable the virtual patient to reason 
about responses and reactions and their appropriateness based on rules derived from literature and validated through 
observation. Finally, adding to the existing after-action review capability by incorporating user modeling will allow 
for tracking variables across sessions (so that the virtual patient would remember how that clinician treated them 
previously, as in cases where the clinician has multiple encounters with the same patient) and introduce difficulty and 
complexity into the scenario to better gauge the learner’s competency. 

Potential DOD customers include facilities that have manikin based and/or screen-based patient simulators in their 
simulation center inventories. These include the U.S. Army Medical Simulation and Training Centers, the Army Cen-
tral Simulation Committee medical treatment facility (MTF) based sim centers, the Navy and Air Force Medical Mod-
eling and Simulation Training MTF based centers (NMMAST/AFMMAST), the joint Medical Education and Training 
Center (METC) campus and USUHS. Tactical Combat Casualty Care (TCCC), Prolonged Field Care (PFC), Pro-
longed Casualty Care (PCC), and Advanced Cardiac Life Support (ACLS) medical training scenarios (e.g., hemor-
rhage control, airway compromise, extremity fractures/traumatic amputations, penetrating trauma to chest and abdo-
men with/without tension pneumothorax, fasciotomy, closed head/traumatic brain injury, concussion with/without 
loss of consciousness, ocular injuries) should be used to challenge the capability of the platform, either manikin or 
screen based. These injuries are very difficult to train a live action role player (LARP), for learners to understand and 
apply techniques correctly, so that the system may have tremendous impact on training realism. 
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